Nitric oxide mediates vasodilatation in response to activation of N-methyl-D-aspartate receptors in brain.
نویسندگان
چکیده
Neurons release nitric oxide (NO) in response to activation of receptors for the excitatory amino acid N-methyl-D-aspartate (NMDA). We examined the hypothesis that activation of receptors for NMDA produces dilatation of the cerebral microcirculation that is mediated by NO. Diameters of cerebral arterioles were measured using a closed cranial window in anesthetized rabbits. Under control conditions, topical NMDA produced concentration-related dilatation of pial arterioles. Dilatation in response to NMDA was inhibited selectively by MK-801 (an NMDA receptor antagonist) and tetrodotoxin, suggesting that responses to NMDA were receptor mediated and dependent on neuronal activation. Increases in arteriolar diameter in response to NMDA were not affected by L-arginine but were inhibited by NG-nitro-L-arginine, suggesting that the vasodilatation was mediated by NO. Dilatation of cerebral arterioles in response to NMDA was not inhibited by indomethacin, suggesting that cyclooxygenase products do not mediate the response. Using isolated cerebral arteries, we also examined whether NMDA elicited direct cerebral vascular effects. In intact arteries studied in vitro, NMDA had no effect on vascular tone, suggesting that cerebral arteries lack receptors for NMDA. These findings suggest that NO generated in response to activation of receptors for NMDA in vivo is neuronally derived and not due to a direct vascular effect. Thus, NO may mediate increases in local blood flow during increases in neuronal activity in response to excitatory amino acids.
منابع مشابه
Roles of neuronal nitric oxide synthase, oxidative stress, and propofol in N-methyl-D-aspartate-induced dilatation of cerebral arterioles.
BACKGROUND It remains unclear whether N-methyl-D-aspartate (NMDA) receptors contribute to cerebral parenchymal vasodilatation, and any effects of clinically used anaesthetics on the dilatation. The present study was designed to examine whether NMDA induces neuronal nitric oxide synthase (NOS)-mediated dilatation, in the cerebral parenchymal arterioles, and whether propofol and superoxide modula...
متن کاملElevated nitric oxide/peroxynitrite theory of multiple chemical sensitivity: central role of N-methyl-D-aspartate receptors in the sensitivity mechanism.
The elevated nitric oxide/peroxynitrite and the neural sensitization theories of multiple chemical sensitivity (MCS) are extended here to propose a central mechanism for the exquisite sensitivity to organic solvents apparently induced by previous chemical exposure in MCS. This mechanism is centered on the activation of N-methyl-D-aspartate (NMDA) receptors by organic solvents producing elevated...
متن کاملN-methyl-D-aspartate (NMDA) mediates vascular relaxation via nitric oxide (NO) in rats but not in mice
Amperometric studies have indicated that substance P as well as NMDA stimulates release of NO in rat aortic rings. These data have been confirmed by functional observations of vaso-relaxant action of NMDA within noradrenaline pre-contracted aortic rings, supporting the presence of NMDA receptor in rat aortic rings. It is known that the enzyme endothelial NO synthase (eNOS) mediates vasodilatati...
متن کاملVerifying of Participation of Nitric Oxide in Morphine Place Conditioning in the Rat Medial Septum Using Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase (NADPH-d)
Background: Role of nitric oxide (NO) in morphine-induced conditioned place preference (CPP) has already been proposed in the rat medial septum (MS), but no molecular evidence has been provided to clear this fact. Methods: Effects of intraseptal injections of L-arginine and/or NG-nitro-L-arginine methyl ester (L-NAME) on morphine place conditioning in Wistar rats were examined. Morphine (2.5-7....
متن کاملNitric oxide mediates glutamate neurotoxicity in primary cortical cultures.
Nitric oxide (NO) mediates several biological actions, including relaxation of blood vessels, cytotoxicity of activated macrophages, and formation of cGMP by activation of glutamate receptors in cerebellar slices. Nitric oxide synthase (EC 1.14.23.-) immunoreactivity is colocalized with nicotinamide adenine di-nucleotide phosphate diaphorase in neurons that are uniquely resistant to toxic insul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 72 2 شماره
صفحات -
تاریخ انتشار 1993